VARIATION OF HAEMOGLOBIN IN
OTOLITHUS RUBER (CUV. & VAL.)

N. B. BHOSLE

National Institute of Oceanography, Dona Paula, Goa-403 004

Haemoglobin phenotypes of rosy jewfish, *Otolithus ruber* were studied by cellulose acetate electrophoresis. Haemoglobin have been named Hb-A, Hb-B, Hb-C and Hb-D according to their increasing mobility. In general most of the samples gave three bands, however variations in number and size of the band, and colour intensity, were observed. In the light of these results on haemoglobin phenotypes, the intraspecific variations in the species have been discussed.

The chemical composition of haemoglobins has been established as polymorphic in several mammals. This polymorphism can easily be demonstrated by electrophoresis which was first used by Pauling et al (1949), for the study of abnormal human haemoglobins. In fishes, genetically controlled polymorphism was first reported in cod, *Gadus morhua* and whiting, *G. merlangus* by Sick (1961, 1965). It has also been shown that in the haemoglobin of fish there may exist an intraspecific variation during ontogeny, such as in salmon, *Salmo salar* (Kock et al., 1964; Vansstone et al., 1964) and herring, *Clupea harengus* (Wilkins et al., 1966). Haemoglobin polymorphism was also demonstrated in a catfish *Tachysurus caclatus* (Dwivedi and Bhosle, 1975).

The rosy jewfish, *Otolithus ruber*, is abundant in coastal waters of Goa and constitutes a commercial fishery. No information is available on the haematology and populations of this species and therefore, an investigation on the haemoglobin phenotypes was undertaken using electrophoresis.

Fifty specimens of *Otolithus ruber* of both sexes and of different length groups were collected from the Velsao Bay, Goa, during January to February, 1975. Caudal-peduncles severed and blood was collected in tubes previously rinsed with ammonium oxalate. The erythrocytes were washed four times with cold 0.9% NaCl and lysed by adding two volumes of chilled distilled water. Lysate was stored overnight at 4°C, again centrifuged and the clear supernatant haemoglobin solution used for electrophoresis.

The electrophoresis was carried out using cellulose acetate strips (Shandon). The electrophoretic technique described by DuToit et al (1973), was used with some modifications. The main points of DuToit et al's modified technique were the cellulose acetate strips of the size 25 X 160 mm, tris buffer of pH 6.1, and a constant voltage of 150 for one-hour.
The haemoglobins were stained with Ponceau S. An outline of the haemoglobins of *O. ruber* is shown in Fig. 1 (A+B). Fig. 2 shows the densitometric scan and Table 1 represents the results of electrophoretic runs of haemoglobins.

**TABLE 1—Electrophoretic Data of the Haemoglobins of *O. ruber***

<table>
<thead>
<tr>
<th>Electrophoresis</th>
<th>No. of individuals</th>
<th>No. of Haemoglobin band</th>
<th>Type of Haemoglobin</th>
<th>Distance from the point of application (cm)</th>
<th>Relative mobility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose acetate</td>
<td>5</td>
<td>Two</td>
<td>Hb-B</td>
<td>1.5</td>
<td>65.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hb-D</td>
<td>2.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Three</td>
<td>Hb-A</td>
<td>0.7</td>
<td>31.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hb-B</td>
<td>1.5</td>
<td>68.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hb-D</td>
<td>2.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Three</td>
<td>Hb-B</td>
<td>1.6</td>
<td>72.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hb-C</td>
<td>1.9</td>
<td>86.36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>One</td>
<td>Hb-B</td>
<td>2.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hb-C</td>
<td>2.0</td>
<td>100</td>
</tr>
</tbody>
</table>

200
of *O. ruber*. All the haemoglobins of *O. ruber* moved towards the anode in tris buffer of pH, 6.1. The haemoglobin components have been named as Hb-A, B, C and D, according to their increasing mobility pattern towards the anode. Hb-A was the slowest anodic component and did not show any variation in strength and colour intensity. It was present in most of the samples, except fourteen samples, where it was not observed. Hb-B was more rapid in its mobility than Hb-A. Hb-B showed variation in strength and colour intensity in a few samples. Hb-B gave a thin band in seven specimens as compared to the Hb-B found in other specimens. Hb-C was present in nine specimens. In two specimens, it was broad and strong whereas in others it was represented by a comparatively thin band. Hb-D gave maximum mobility but again showed considerable variation. In most of the specimens, Hb-D was a strong and broad band, but in seven specimens it gave a strong but relatively thin band, while in the other samples it was entirely absent.

The results suggest that the individual variations are demonstrated by the present technique in *O. ruber*. The intraspecific variations obtained in the present investigation do not show any relation to either sex or length, and the significance of abnormal haemoglobins of *O. ruber* is difficult to understand. In the sprat (Wilkins et al., 1966; Naevdal,
1968) and other clupeoid fishes (Simpson and Simson, 1966), intraspecific variations have been described but these variations are neither found to be associated with age or length nor do they have any apparent genetic basis. The number of individuals possessing the abnormal haemoglobin in the present study is too small for a satisfactory genetic analysis. However, a possible explanation for the appearance of such intraspecific variation in haemoglobin fractions of varying electrophoretic mobility is due to the substitution of the amino acid in each of the semi-molecules that constitutes the globin (Ingram, 1957). This substitution would alter the physicochemical properties of haemoglobin completely and could explain the differences in the electrophoretic mobility. A detailed study of oxygen requirement of O. ruber and the biochemical properties of its haemoglobin could reveal more information about the physiological need for the multiplicity of its haemoglobins.

I would like to extend my sincere thanks to Dr. S. Z. Qasim, Director, N.I.O., Goa for critically going through the manuscript. I am also grateful to Dr. Norman Maclean, Southampton University, U. K. and to Dr. S. N. Dwivedi, Director, C.I.F.E., Bombay for their valuable suggestions.

REFERENCES

Dwivedi, S. N. and N. B. Bhosle. 1975 Geobios, 2, 77-78


Naevdal, G. 1968 Fisk Dir. Skr; Ser; Hav Unders., 14, 161-182.


